Full-color structured illumination optical sectioning microscopy
نویسندگان
چکیده
In merits of super-resolved resolution and fast speed of three-dimensional (3D) optical sectioning capability, structured illumination microscopy (SIM) has found variety of applications in biomedical imaging. So far, most SIM systems use monochrome CCD or CMOS cameras to acquire images and discard the natural color information of the specimens. Although multicolor integration scheme are employed, multiple excitation sources and detectors are required and the spectral information is limited to a few of wavelengths. Here, we report a new method for full-color SIM with a color digital camera. A data processing algorithm based on HSV (Hue, Saturation, and Value) color space is proposed, in which the recorded color raw images are processed in the Hue, Saturation, Value color channels, and then reconstructed to a 3D image with full color. We demonstrated some 3D optical sectioning results on samples such as mixed pollen grains, insects, micro-chips and the surface of coins. The presented technique is applicable to some circumstance where color information plays crucial roles, such as in materials science and surface morphology.
منابع مشابه
Single-exposure optical sectioning by color structured illumination microscopy.
Structured illumination microscopy (SIM) is a wide-field technique that rivals confocal microscopy in optical sectioning ability at a small fraction of the acquisition time. For standard detectors such as a CCD camera, SIM requires a minimum of three sequential frame captures, limiting its usefulness to static objects. By using a color grid and camera, we surpass this limit and achieve optical ...
متن کاملFluorescence sectioning with dynamic speckle illumination microscopy
We present a novel fluorescence microscopy technique that provides depth sectioning in thick tissue. The technique relies on dynamic speckle illumination, and depth sectioning is obtained from an a priori knowledge of speckle statistics. We demonstrate nearconfocal imaging in a mouse brain labeled with green fluorescent protein. Confocal microscopy [1] is a popular technique in the bioimaging c...
متن کاملSimultaneous optically sectioned fluorescence and optical coherence microscopy with full-field illumination.
Full-field optical coherence microscopy (FF-OCM) and optically sectioned fluorescence microscopy are two imaging techniques that are implemented here in a novel dual modality instrument. The two imaging modalities use a broad field illumination to acquire the entire field of view without raster scanning. Optical sectioning is achie...
متن کاملDMD-based LED-illumination Super-resolution and optical sectioning microscopy
Super-resolution three-dimensional (3D) optical microscopy has incomparable advantages over other high-resolution microscopic technologies, such as electron microscopy and atomic force microscopy, in the study of biological molecules, pathways and events in live cells and tissues. We present a novel approach of structured illumination microscopy (SIM) by using a digital micromirror device (DMD)...
متن کاملMethods for imaging thick specimens: confocal microscopy, deconvolution, and structured illumination.
When a thick specimen is viewed through a conventional microscope, one sees the sum of a sharp image of an in-focus region plus blurred images of all of the out-of-focus regions. High background, scattering, and aberrations are all problems when viewing thick specimens. Several methods are available to deal with these problems in living samples. These methods can be grouped into three classes: ...
متن کامل